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Abstract—In this study, we explore the tradeoffs
between accuracy, model size, and training time for
humpback whale vocalization detection models.
We investigate the potential of using TensorFlow
Lite (TFLite) and feature selection techniques to
create smaller and more efficient models for low-
power devices. We develop a custom Keras model
using the pre-trained humpback whale model as a
baseline, achieving 96.13% accuracy. We then train
a TFLite model that achieves 76.25% accuracy but is
only 5% of the size of the Keras model. Addition-
ally, we experiment with different features, specifi-
cally mel-frequency cepstral coefficients (MFCCs),
as inputs to a a VGG block-based CNN to show-
case their higher performance (81.99% vs 68.14%
accuracy), faster runtime, and smaller model size
advantages over using the reference waveform
features. Our findings highlight the potential of
using TFLite as a baseline for creating efficient
models while showing the importance of domain-
specific knowledge in further optimizing model
accuracy and size.

Index Terms—TinyML, Humpback Whale De-
tection, Embedded Devices, Convolutional Neural
Networks, TFLite

INTRODUCTION

The rapid advancement of machine learning
(ML) techniques, combined with the increasing
availability of large-scale datasets, has enabled
remarkable progress in a wide range of appli-
cations. In recent years, one such application
has been the automated detection and analysis
of marine mammal vocalizations, specifically
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the songs of humpback whales. The study “A
Convolutional Neural Network for Automated
Detection of Humpback Whale Song in a Di-
verse, Long-Term Passive Acoustic Dataset”
[1] presents a convolutional neural network
(CNN) that effectively identifies humpback
whale songs in passive acoustic recordings.

The ability to automatically detect and an-
alyze humpback whale vocalizations has sig-
nificant ecological and conservation implica-
tions. As an endangered species, understand-
ing humpback whales’ distribution, abun-
dance, and behavior is crucial for develop-
ing effective conservation strategies [2]. Passive
acoustic monitoring (PAM) enables researchers
to non-invasively study these animals over
long periods and in remote locations, provid-
ing invaluable insights into their lives [3].

However, the scale and diversity of PAM
data make manual analysis a time-consuming
and resource-intensive task. The CNN pre-
sented in the original study [1] offers a solution
to this challenge by automating the detection
process and significantly reducing the time
and effort required for analysis. Consequently,
this enables researchers to monitor larger areas
over extended periods, providing a more com-
prehensive understanding of humpback whale
populations and their habitats.

While the CNN model

original has



demonstrated impressive performance, its
deployment on embedded devices, such
as low-power, small-footprint underwater
sensor nodes, remains challenging due to its
computational and memory requirements.
Shrinking the model size enables real-time,
energy-efficient, and continuous monitoring
in remote and inaccessible environments.
This is where TinyML, the branch of machine
learning focused on developing ML models
for resource-constrained hardware, comes in
[4].

In this paper, we propose an efficient
TinyML-based humpback whale detection
model that retains the performance of the
original CNN while significantly reducing its
computational and memory requirements. This
optimization enables the model to be deployed
on embedded devices, which offers two key
benefits:

1) Real-time Cetecean Detection: The pri-
mary extension the original work dis-
cusses is utilizing the model for endpoint
PAM feature extraction instead of histori-
cal analysis. By processing data on the de-
vice itself, the model can run inference on
continuous streams of samples, enabling
real-time detection and response to under-
water audio events.

2) Scalability: With a smaller, more efficient
model, it becomes feasible to deploy sen-
sor nodes over vast ocean expanses, pro-
viding comprehensive spatial and tempo-
ral coverage of marine mammal activity
and data collection.

For these reasons, this paper serves as a sur-
vey of methods and approaches that can enable
on-device execution of ML-based humpback
whale song detection systems, both being a
medium for us to learn TinyML in an exciting
context and providing an insight into how our
work implicates further studies in automated
marine research and conservation.

I. RELATED WORK
A. Automated Marine Vocalization Detection

The increasing use of passive acoustic mon-
itoring (PAM) in marine mammal research has
led to the development of various automated
detection and classification methods. A signifi-
cant amount of research has been conducted on
detecting the vocalizations of cetaceans, includ-
ing humpback whales, using machine learning
algorithms [3], [5]. The original study [1] we
build upon presents a convolutional neural
network (CNN) for the automated detection
of humpback whale songs, demonstrating high
performance in diverse and long-term passive
acoustic datasets.

B. Deep Learning Model Compression Technigues

In order to deploy deep learning models
on resource-constrained devices, several model
compression techniques have been proposed.
These techniques aim to reduce the size and
computational requirements of the models
while retaining their performance. Key meth-
ods include network pruning [6], weight quan-
tization [7], and knowledge distillation [§]. In
our work, we employ a combination of these
techniques to shrink the various model we
consider for deployment on embedded devices.

C. TinyML

TinyML, the branch of machine learning fo-
cused on developing ML models for resource-
constrained hardware, has been gaining signif-
icant attention in recent years [4]. Researchers
have developed various techniques and tools to
facilitate the deployment of ML models on de-
vices with limited memory, processing power,
and energy supply, such as microcontrollers
and IoT devices [9]], [10]. By leveraging TinyML
techniques, our work aims to develop an ef-
ficient humpback whale detection model that
can be deployed on embedded devices for real-
time, energy-efficient, and scalable monitoring.



BACKGROUND
D. Network Pruning

Network pruning is a model compression
technique that aims to reduce the size and com-
putational requirements of a neural network
by removing redundant or less important con-
nections or neurons. The central idea behind
network pruning is that not all connections
contribute equally to the model’s performance,
and removing less important connections may
not significantly impact the accuracy while
providing substantial reductions in model size
and computational complexity [6].

There are two main types of pruning: weight
pruning and neuron pruning. In weight prun-
ing, individual connections with small weights
are removed, while in neuron pruning, entire
neurons along with their connections are re-
moved if their activations are consistently low
throughout the training process.

A common method for pruning is to apply
a threshold value to the weights or activations.
Connections or neurons with values below the
threshold are removed, and the remaining net-
work is retrained to fine-tune the weights and
recover any lost performance. The pruning and
retraining process can be performed iteratively
to achieve the desired level of compression.

E. Weight Quantization

Weight quantization is another model com-
pression technique that aims to reduce the
memory footprint and computational require-
ments of a neural network by reducing the
precision of the weights and activations. This
is achieved by representing the weights and
activations using a smaller number of bits than
the original representation, typically 16, 8, or
even fewer bits [7].

Quantization can be performed uniformly,
where the range of values is divided into
equally spaced intervals, or non-uniformly,
where the intervals are chosen adaptively

based on the distribution of the values. Com-
mon types of quantization include linear quan-
tization, logarithmic quantization, and binary
or ternary quantization.

By using lower-precision representations, the
memory required to store the weights and acti-
vations is reduced, leading to a smaller model
size. Furthermore, lower-precision arithmetic
can be computed more efficiently than high-
precision arithmetic, resulting in faster compu-
tation and lower energy consumption.

F. Knowledge Distillation

Knowledge distillation is a model compres-
sion technique that transfers the knowledge
from a large, complex teacher model to a
smaller, more efficient student model [8]. The
student model is trained to mimic the output
distribution of the teacher model, rather than
the ground truth labels, which allows it to learn
a more generalized representation of the data.

The distillation process is typically per-
formed by minimizing a loss function that
combines the cross-entropy loss between the
student’s output and the ground truth labels
and a distillation loss that measures the dif-
ference between the student’s output and the
teacher’s output. The distillation loss is often
computed using the Kullback-Leibler diver-
gence between the two output distributions.
The teacher’s output is typically softened us-
ing a temperature parameter to produce a
smoother distribution.

By learning from the teacher model, the
student model can achieve higher performance
than if trained directly on the ground truth
labels. This enables the use of smaller and more
efficient models without sacrificing significant
performance.

METHODOLOGY

Our initial aims for this project were to
shrink an already-existing model [11f], create
our own homebrew TFLite model, prune a



VGG block-based model, and compare which
methods had the best outcome in terms of
speed, size, and accuracy.

The Existing Model and Dataset

Published in 2021, the humpback_whale
model [11] by NOAA and Google provides a
way to analyze audio samples for the pres-
ence of humpback whale vocalizations. The
model is a large CNN (ResNet-50) trained on
over 187,000 hours of data collected across the
Central and Western Pacific between 2005 and
2019 to identify humpback whale vocalizations
[12]. The model does so with average precision
of 97%, although it achieves this score at the
cost of its size of 101.1 MB. The dataset is
part of the Pacific Islands Passive Acoustic
Network (PIPAN) dataset [13], totaling over
ten terabytes in size. The dataset comes with
an annotations. csv file, which details 38857 an-
notated audio segments, including specifying
them as belonging to one of the following
classes: (1) background or environmental noise,
(2) recording device noise, (3) fish noise that is
not that of a humpback whale, (4) a humpback
whale vocalization, (5) vessel noise, (6) any
other sounds not specified above. We wrote a
script which finds, downloads, and processes
each FLAC file that is listed in the CSV by
converting it to a WAV format and cutting
out all annotated clips out of the complete
recordings.

Roadblocks and Setbacks

The attached dataset to the paper in [11] was
an invaluable resource in our project’s training
and testing stages. However, the format in
which the dataset was made available to us
and the length of the audio made it infeasible
for us to use right out of the box, even on the
Adroit computing cluster. Downloading the
entire dataset would have taken on the order
of 10 terabytes, and the inference times would
have been an order of magnitude larger than

our inference times in this project. Therefore,
substantial effort was expended on download-
ing and processing each audio file individually
and trimming it concerning the critical features
present in that file. This served as a significant
roadblock, as concrete work with regard to
training, testing, and comparing models could
only be accomplished after this script was fin-
ished and could process the sample files. In
addition, even with the more streamlined file,
the entire dataset took multiple days to be
processed, even on the Adroit cluster.

Throughout this final project, our endeav-
ors to reduce the size of the existing model
presented in [11] were met with limited suc-
cess, primarily due to the SavedModel format
employed by the paper’s authors. The format
the authors used to store and distribute their
model were incompatible with the pruning
methods that we attempted. As a result, we
opted to incorporate their model as a layer in
the development of our own custom baseline
model. Much of the time was allocated to
creating this new model and rendering it to
be compatible with our software. Additionally,
since this workaround to incorporate their pre-
trained model in ours was not discovered until
much later, we were ultimately unable to im-
plement the knowledge distillation portion of
the project.

Additionally, we encountered numerous
challenges when debugging the TFLite
installation process. Following the TFLite
tutorial code found at [14], we faced a series
of errors when executing the command
pip install tflite-model-maker,
including the unintended installation of
multiple versions of the tf-nightly
package. This particular issue has been
previously documented in the literature [15]
and is actively being addressed by a team of
TensorFlow engineers. Despite this obstacle,
we eventually resolved the issue by reverting
to an earlier Python environment available in



Google Colab. This Colab approach allowed us
to successfully install tflite-model-maker
package and commence further project work
after rectifying additional environment setup
errors.

REsuLTs
Keras Model

While attempting to get the pre-trained
model provided in [[11] working, we decided
to train another model using their pre-trained
model as the main layer (of type KerasLayer,
since we obtained their model from TFHub)
and a Keras dense layer to interpret the output
of their pre-trained model. We trained this
model for four epochs, using approximately
3000 labeled samples as training data. Our
choice of the number of epochs and samples
used was primarily motivated by the training
speed—this model took about two hours per
epoch to train on our laptops. In the end, we
obtained a training accuracy of approximately
96.18% and a testing accuracy of approximately
96.13%. However, this model was quite large—
as shown in Figure 1} the model had 23,538,758
total parameters and took up 306.6 megabytes
of space. As we will see in later sections, we
used this model as a baseline for the perfor-
mance and space tradeoff using Tensorflow or
TFLite.

Model: "sequential"

Layer (type) Output Shape Param #

keras_layer (KerasLayer) (None, 1) 23538753
prune_low_magnitude_dense ( (None, 1) 5

PrunelLowMagnitude)

Total params: 23,538,758
Trainable params: 23,477,443
Non-trainable params: 61,315

Fig. 1. TensorFlow summary of our sequential model.

TFLite

In contrast, we trained a TFLite model with
the base model being YamNet for over 100

Total p 1 2,
Trainable params
Non-trainable params: 8

Fig. 2. TensorFlow summary of our TFLite model.

epochs and the same 3000 training samples.
This resulted in a final model of size 14.4
megabytes, 2,050 total parameters and took
about 4 hours to train. The summary of this
model can be seen in Figure

The model achieved a training accuracy of
78.52% on training data and 76.25% accuracy
on the testing dataset as well, showing that us-
ing the TFLite library to create TinyML models
could be a practical approach towards training
small models to be used on devices with lim-
ited resources.

Additionally, we were able to use post-
training quantization to shrink the size of our
TFLite model instance down to 3.9 megabytes.
However, we were unable to interpret the re-
sults of this model meaningfully. Our attempts
to do so via extracting the maximum likelihood
heuristic from the output were unsuccessful
in achieving a result different from random
chance. That is, we could not find an interpre-
tation of the raw data output by the model to
anything that achieved a > 50% accuracy on
the testing data.

Finally, significant effort was put into con-
ducting Quantization-Aware-Training for the
Keras model. Our training infrastructure was
similar to the above framework. However, we
followed the quantized aware training example
process highlighted in [16]. The primary is-
sue with running the quantized aware training
code was again that the Kaggle pre-trained
model, even acting as an additional KerasLayer
object, was almost immutable, failing to adapt
the quantization aware penalties that this train-
ing applied. Thus while QAT could modify the



Model: "sequential 3"

Layer (type) Output Shape

conv2d_6 (Conv2D) (None, 220, 220, 32) 320

conv2d_7 (Conv2D) (None, 218, 218, 64)

max_pooling2d_3 (MaxPooling
2D)

(None, 109, 109, 64) 0

dropout_6 (Dropout) (None, 109, 109, 64) 0

flatten_3 (Flatten) (None, 760384) 0

dense_6 (Dense) (None, 128) 97329280

dropout_7 (Dropout) (None, 128) 0

dense_7 (Dense) (None, 2) 258

Total params: 97,348,354
Trainable params: 97,348,354
Non-trainable params: 0

Input shape: (222, 222, 1)

Fig. 3. TensorFlow summary of our VGG block model.

behavior of the added Keras Dense layer, it
served no use in modifying the underlying pre-
trained model behavior.

VGG-based CNNs

Having never previously considered the
model size implications in real-time low-power
device scenarios, we wanted to assess the stor-
age impact of classic deep-learning models. To
better understand this, we designed a simple
single VGG block convolution neural network
shown in Figure 3| that follows VGG block
conventions and takes in the same input as the
original humpback whale detection model, re-
dimensioned as a 2D numpy array. This model
did not undergo any parameter optimizations
or any acceleration methods, and so achieved a
poor but better-than-guessing testing accuracy
of 68.14%. However, the more critical observa-
tions come from the poor time performance
and large size of the resulting model. One
training epoch took on average 462.53 seconds,
and the model took up 1.18 GB of storage
space. Naturally, pruning or running quantiza-
tion on this model could help runtime and size,
yet the model itself is not performant enough
for that to be worth it. This small experiment

showed us that (as expected) constructing task-
specific well-optimized models is difficult. Still,
more importantly, it showed that even a seem-
ingly simple model actually takes up way more
space than would otherwise be available on a
nimble low-powered device.

Smarter Feature Selection

The above experiment prompted another
question: why did the authors use waveforms
as their model input? In other machine learn-
ing applications, condensed audio features are
often used as input for deep learning models.
For instance, MFCCs (mel-frequency cepstral
coefficients) is an audio power spectral density
representation that is shown to be a powerful
feature for sound classification in language
models [17]. We proposed that better features
like MFCCs would enable lighter and better
deep-learning models, including the original
model provided with our dataset. While we
cannot retrain the original model given, we can
hypothesize about feature selection impacts
using the VGG block-based model presented
in the previous section.

The first 28 MFCCs (28x28 float matrix) were
extracted from each labeled sound segment
and used as input to the CNN model. Ap-
propriately, the input dimensions to the CNN
were changed to (28, 28, 1). Using MFCCs, we
achieved 81.99% testing accuracy, with the final
model sized at 14.6 MB and a runtime of an
average of 0.24 seconds per epoch. In other
words, selecting MFCCs as the model input in-
stead of the author-selected waveform enabled
us to create a model that is ~80x smaller, trains
~2000x faster, and generally performs better.

Even if the model using waveform fea-
tures could be optimized to achieve better
accuracy than the MFCC-based model, run-
ning the waveform-based model on resource-
constrained devices may still prove infeasi-
ble, prompting a switch to more condensed
lightweight features like MFCCs. Thus, in addi-



tion to pruning and quantization, it is equally
important to step back and assess feature selec-
tion as a significant factor in defining efficient
TinyML models.

FuturE WoORK

Continuing this work, we wish to explore
how much smaller we can make the TFLite and
quantized models. Additionally, it would have
been helpful to use and analyze other methods
of creating smaller ML models, such as knowl-
edge distillation, quantization-aware training,
and pruning techniques, to create a complete
picture of the tradeoffs between the different
methods. Additionally, since the Keras model
was able to achieve a stunningly high accuracy,
it would be interesting to explore knowledge
distillation with the Keras model as the teacher.
Furthermore, it would be interesting to investi-
gate if an intricate relationship exists between
accuracy, model size, and training time, like the
efficient frontier in investment theory.

CONCLUSION

In conclusion, we were able to discover that
many different levels of accuracy, model size,
and training time could be achieved. Of partic-
ular note is the TFLite instance, which was able
to reach a model size that is ~ 5% of the size
of the baseline Keras model that we trained,
and an astonishing ~ 1% of the size of the
VGG block model. While still maintaining such
a compact size, the TFLite model was able to
maintain an admirable accuracy of 76.25% dur-
ing inference time, which is competitive with
the accuracy of 96.13% and 81.99% experienced
by the Keras and MFCC models, respectively.

We also explored the viability of using differ-
ent feature selectors to bolster model accuracy
while dramatically reducing model size. By
using MFCCs, we were able to do so, shrinking
the model down to almost the size of the
TFLite instance. From this we conclude that the
TFLite library is certainly a great general tool

for creating models with little-to-no knowl-
edge of the underlying data or applications,
especially given its access to powerful pre-
trained models, like YamNet. However, with
more specific knowledge and the ability to re-
strict the problem domain, like we were able to
accomplish in this project by using MFCCs, we
can apply more powerful and domain-specific
tools that can dramatically increase accuracy
and decrease model size. We believe that using
TFLite as a baseline model can be a powerful
comparison tool for new analyses and methods
proposed in the TinyML field.

CONTRIBUTIONS
Oleg Golev

For this project, my contribution was two-
fold: data management and working with the
VGG block-based CNN. I wrote the script
and data handling handle code responsible for
the cleaning and preparation of the reference
dataset [11]], extraction of annotated clips, and
processing of the data into WAV files that were
shared to other group members for their model
training and inference. I also designed, ran,
and assessed the VGG block-based models on
their performance, runtime, and size. I ran
these models with both the original waveform
features used by the reference model [11] au-
thors and MFCCs features. Finally, I wrote
major sections of the report, as did the others.

Gerald Huang

My contributions to this project were primar-
ily in setting up the machine learning code
(pruning, training, testing code), debugging
Python, Tensorflow, TFLite, and other machine
learning modules throughout this project. I
was able to get the pre-trained model in [11]
up and running, as well as figure out how to
use the other packages and Tensorflow, none
of which I had used before, to work with my
local setup and Google Colab. I wrote scripts
to organize the structure of the directory to



make our codebase compatible with the format
expected by the Tensorflow library functions. A
large portion of my work was delayed by var-
ious issues surrounding the Tensorflow code
infrastructure, especially being unable to get
the tflite-model-maker package installed
until much later. Additionally, I trained the
Keras, TFLite, and quantized TFLite models
while also running inferences and analyzing
each model’s performance. I also wrote the
corresponding sections in Results detailing the
outcome of my efforts, as well as the Road-
blocks, Future Work, and Conclusion sections.

Vikash Modi

My contributions to this project were as fol-
lows: Defining and shaping the project scope,
motivation, background, and the exploration of
related works. Integrating the original model
with TensorFlow, and exploring quantization
and knowledge distillation techniques for the
pretrained model. Overcoming challenges as-
sociated with limited prior experience in the
techniques used and addressing the complex-
ities of the pretrained Kaggle model. Investi-
gating the underlying structure of the original
model, discovering that it incorporates a short-
time Fourier transform (STFT) operation before
feeding the data into the ResNet CNN archi-
tecture. Attempting to separate the STFT spec-
trogram creation module from the network,
which could lead to more efficient pruning and
quantization of the model in the future. This
separation also has the potential to facilitate
the incorporation of the STFT operation into
embedded devices independently.
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